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For understanding the effects of an internal microstructure, generalised microcontinuum
theories with additional microstructural parameters are developed. One such a parameter,
called the characteristic length of the material comparable with the internal cell size of the
material is involved in the couple stress theory. The problem of propagation of Lamb waves
in a plate with an internal microstructure and loaded with an inviscid liquid on both sides
is studied using the couple stress theory. The dispersion equation of Lamb waves with the
liquid loadings is derived. The impact of the liquid loadings is studied on the propagation
of Lamb waves. The effect of the characteristic length is also studied on the phase velocity
of Lamb waves in the plate for various modes in the presence of liquid loadings.
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1. Introduction

Classical theory of elasticity is inadequate to capture the size effects, as the atomic structure
of the material is ignored in this theory, and it is based on the assumption of homogeneity of
the material. It can describe elastic deformations and properties of materials at macroscale.
However, experimental evidences show that mechanical behaviour of the material at microscale
is different from its behaviour at macroscale. To explain this, there was a need to develop a
new theory or to modify existing ones, which can fill this gap of theoretical and experimental
results. Microcontinuum theories such as micropolar theory (Eringen, 1968), strain gradient
(Mindlin, 1964) and couple stress theory (Toupin, 1962; Mindlin and Tiersten, 1962; Koiter, 1964;
Hadjesfandiari and Dargush, 2011) were developed to investigate the microstructural effects in
the material.
Voigt (1887) was the first to create the idea of couple stresses in the materials by assuming

that an infinitesimal surface element transmits both Cauchy stresses and couple stresses. Cosse-
rat and Cosserat (1909) gave the mathematical model to analyse materials with couple stresses
by considering that the deformation of the medium is described by a displacement vector and
an independent rotation vector. This theory was not recognised at that time. Later on, this
concept was used by many researchers like Toupin (1962), Mindlin and Tiersten (1962), Koiter
(1964), Eringen (1968), Nowacki (1974) to explore microstructural effects in the material. Ma-
ny problems of wave propagation in an elastic medium with a microstructure under different
conditions have been studied by applying the couple stress theory. Sengupta and Ghosh (1974)
studied the effects of couple stresses on wave propagation in an elastic layer and they observed
that couple stresses affect the velocity of propagation of waves in the elastic layer. Das et al.
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(1991) studied thermo-viscoelastic Rayleigh waves under the influence of couple stress and gra-
vity. They derived more general equations of phase velocity for these waves and showed that it
reduces to classical elastic Rayleigh waves in the absence of couple stresses, viscosity and gra-
vity. Ottosen et al. (2000) studied Rayleigh waves by applying the indeterminate couple stress
theory. Georgiadis and Velgaki (2003) shown the dispersive nature of Rayleigh waves propaga-
ting along the surface of a half-space at high frequencies using the couple stress theory and also
tried to estimate the values of microstructural parameters in couple stress theory. Akgoz and
Civalek (2013) did the modeling and analysis of micro-sized plates resting on an elastic medium
using the modified couple stress theory. Chen and Li (2014) proposed a new modified couple
stress theory for anisotropic elasticity containing three length scale parameters and developed
composite laminated Kirchhoff plate models under this theory.
Hadjesfandiari and Dargush (2011) formulated a couple stress theory for an isotropic ma-

terial involving three parameters λ, µ and η. The constants λ, µ have the same meaning as
Lamé constants in Cauchy elasticity and η is a length scale parameter which accounts for co-
uple stress effects for isotropic solids. Evaluation of η requires characteristic material length l
which is absent in Cauchy elasticity. One of the major problems in these size dependent elastic
theories (Cosseret, 1909), micropolar (Eringen, 1968) and couple stress (Toupin, 1962; Mindlin
and Tiersten, 1962; Koiter, 1964; Hadjesfandiari and Dargush, 2011) is determination of these
length scale parameters. It was observed (Lakes, 1991) that the characteristic length would be
undetectable in any macroscopic mechanical experiment, but have relevance in studies involving
composite and cellular solids. In fibrous composites, the characteristic length may be of the order
of spacing between the fibres. In cellular solids, it may be comparable to the average cell size of
the material.
Lakes et al. (1986), while studying propagation of an ultrasonic wave in wet bone, pointed

out that bone may be regarded as a composite with particulate, porous and fibrous structural
elements at different levels of scale. Vavva et al. (2009) also described bone as a strongly hete-
rogeneous natural composite with a complex structure and carried out the study by taking the
characteristic length comparable to the size of the bone microstructure that is of the order of
10 to 500µm.
Lamb waves travel in thin stress free elastic plates and were originally studied by Horace

Lamb (1917). These waves are extremely useful for detection of cracks, corrosion and other
defects in materials using non destructive testing techniques and have immense applications in
aerospace, industrial and engineering fields. Viktorov (1967) gave the further details by provi-
ding dispersive nature of Lamb waves and explained that they are formed by interference of
multiple reflections and mode conversion of longitudinal and shear waves at the free surfaces of
the plate. Osborne and Hart (1945) examined Lamb waves activated in steel plates in under-
water explosions and made a comparison between theoretical and experimental results. Schoch
(1952) investigated the effect of an inviscid liquid loading on the propagation of Lamb waves
and derived the dispersion relation for leaky Lamb waves for an isotropic plate. Wu and Zhu
(1992) studied the propagation of Lamb waves in a plate bordered with inviscid liquid layers
on both sides. The dispersion equations of this case were derived and showed that phase velo-
city varies with thickness of the liquid layers. Sharma and Pathania (2003) studied generalized
thermoelastic Lamb waves in a homogeneous isotropic, thermally conducted plate bordered with
layers of an inviscid liquid or inviscid half space. Sharma and Kumar (2009) studied Lamb waves
in micropolar thermoelastic solid plates immersed in a liquid with varying temperature. They
studied the effect of the characteristic length and coupling factor on the phase velocity of the
Lamb wave. Vavva et al. (2009) discussed velocity dispersion of guided waves propagating in a
free gradient elastic plate by showing its application to cortical bone. They studied microstruc-
tural effects on the propagation of guided waves by applying gradient elasticity and concluded
that this theory can provide additional information for better understanding of the waves. Wu
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et al. (2009) investigated vibration characteristics in a microscale fluid loaded rectangular iso-
tropic plate attached to a uniformly distributed mass. They studied plate vibrations under the
simultaneous effect of fluid loadings and attached mass loadings.
In an earlier work, the authors (2014) successfully employed the couple stress model (Ha-

djesfandiari and Dargush, 2011) to capture size effects on velocity dispersion in an elastic plate.
It was observed that the microstructural parameter affected the dispersion of the Lamb wave.
The dynamical characteristics of a structure get affected when it is surrounded by a fluid. This
study becomes more important when the material under consideration exhibits internal micro-
structure. Lamb waves are guided waves propagating in a traction free plate surface, however
if the surface of the plate is in contact with the fluid, a part of energy will leak into the liquid,
and this phenomenon may find possible applications not only in non destructive evaluation of
materials, but also in biomedical field. Keeping this in mind, the fluid-solid model adopted by
Sharma and Kumar (2009) is applied to extend the study of Lamb waves (Sharma and Kumar,
2014) in a thin elastic plate with a microstructure. The study is carried out for a thin elastic
plate having mechanical properties similar to bone, bordered on both sides with an inviscid
liquid by applying the couple stress theory (Hadjesfandiari and Dargush, 2011) to capture the
effects of both liquid loading and microstructure in terms of the internal characteristic length of
the material.

2. Formulation and solution of the problem

Consider an infinite homogeneous isotropic, elastic plate of thickness 2d. The plate is bordered
both on the top and bottom with infinitely large homogeneous inviscid liquid layers of thick-
ness H. Consider the origin of the coordinate system (x, y, z) in the middle of the plate. The
XY -plane is chosen to coincide with the middle surface of the plate and z-axis is normal to the
plate, along the thickness of the plate pointing vertically downwards. We consider the XZ-plane
as the plane of incidence and assume that the solutions are explicitly independent of y.

Fig. 1. Geometry of the considered structure

The basic governing equation of motion and constitutive relations of couple stress elasticity
for an isotropic material in the absence of body forces (Hadjesfandiari and Dargush, 2011) are
given by

(λ+ µ+ η∇2)uk,ki + (µ− η∇2)∇2ui = ρüi
σji = λuk,kδij + µ(ui,j + uj,i)− η∇2(ui,j − uj,i)

µji = 4η(ωi,j − ωj,i) ωi =
1
2
ǫijkuk,j

(2.1)

where λ and µ are Lamé constants, η = µl2 is the couple-stress coefficient, l is the characteristic
length, ρ is the density of the plate, ui are the displacement components, commas are used for
partial differentiation and dot notation (·) is used for partial differentiation with time. Here,
σji is the non-symmetric force-stress tensor, µji is skew symmetric couple-stress tensor, ωi is the
rotation vector, δij is Kronecker’s delta and ǫijk is the permutation tensor.
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In the solid, we take

u =
∂φ

∂x
− ∂ψ

∂z
w =

∂φ

∂z
+
∂ψ

∂x
(2.2)

where u and w are the x and z components of the particle displacement in the plate. φ and
~ψ = (0, ψ, 0) are the potential functions of the longitudinal and shear waves in the solid. In the
liquid boundary layers, we have

u′1 =
∂φ1
∂x
− ∂ψ1

∂z
w′1 =

∂φ1
∂z
+
∂ψ1
∂x

u′2 =
∂φ2
∂x
− ∂ψ2

∂z
w′2 =

∂φ2
∂z
+
∂ψ2
∂x

(2.3)

where φj and ψj, j = 1, 2 are the scalar potential and vector potential for the bottom liquid layer
(j = 1) and for the top liquid layer (j = 2), u′j and w

′
j are respectively x and z components of

the particle displacement in the layers of the liquid. Because the inviscid liquid does not support
the shear motion, so the shear modulus of the liquid vanishes and hence ψj = 0, j = 1, 2. The
potential functions φ, ψ and φj satisfy the basic governing equations

∇2φ = 1
C21

∂2φ

∂t2
∇2ψ − l2∇4ψ = 1

C22

∂2ψ

∂t2
∇2φj =

1
C2L

∂2φj
∂t2

(2.4)

and for the liquid the stresses are σ′ji = λLu
′
k,kδij and the couple stresses in the case of the liquid

are all zero. C21 = (λ+2µ)/ρ, C
2
2 = µ/ρ are the dilatational and shear wave speeds, respectively,

in the classical theory of elasticity C2L = λL/ρL. Here CL is the velocity of sound in the liquid
and λL is the bulk modulus. Prime denotes the same quantities for the liquid layer.
Using equations (2.2) and (2.3) in equations (2.1)2,3, we get stresses and couple stresses in

terms of the potential functions as

σzx = µ
(∂2ψ
∂x2
− ∂2ψ

∂z2
+ 2

∂2φ

∂x∂z

)
+ µl2

(∂4ψ
∂x4
+
∂4ψ

∂z4
+ 2

∂4ψ

∂x2∂z2

)

σzz = µ
[C21
C22

(∂2φ
∂x2
+
∂2φ

∂z2

)
− 2∂

2φ

∂x2
+ 2

∂2ψ

∂x∂z

]

µzy = −2µl2
(∂3ψ
∂z3
+

∂3ψ

∂z∂x2

)

(2.5)

and the value of stresses in the liquid in terms of the potential function becomes

σ′zz = λL
(∂2φj
∂x2
+
∂2φj
∂z2

)
(2.6)

We assume solutions of the form

{φ,ψ, φj} = {f(z), g(z), φj(z)}eiξ(x−ct) (2.7)

where c = ω/ξ is the phase velocity, ω is the frequency and ξ is the wave number. Using solutions
(2.7) in Eqs. (2.4) and solving the resulting differential equations, we get the expressions for φ,
ψ and φj as

φ = (A1 cosαz +A2 sinαz)eiξ(x−ct)

ψ = (A3 cosβz +A4 sin βz +A5 cos γz +A6 sin γz)eiξ(x−ct)

φ1 = A7 sin δ[z − (d+H)]eiξ(x−ct) d < z < d+H

φ2 = A8 sin δ(z + d+H)eiξ(x−ct) − (d+H) < z < −d

(2.8)
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where

α2 = ξ2
( c2

C21
− 1

)
β2 + γ2 = −

(
2ξ2 +

1
l2

)

β2γ2 =
ξ2

l2

(
1 + ξ2l2 − c2

C22

)
δ2 = ξ2

( c2

C2L
− 1

)

Here φ1 and φ2 are solutions of standing waves and are chosen in such a way that the acoustical
pressure is zero at z = ±(d+H).
The boundary conditions at the solid-liquid interfaces z = ±d to be satisfied are:
(i) The magnitude of the normal component of the stress tensor of the plate should be equal
to the pressure of the liquid, that is σzz = σ′zz

(ii) Since the liquid does not support the shear motion so, the tangential component of the
stress tensor should be equal to zero, which implies σzx = 0

(iii) Couple stress tensor, µzy should vanish, that is µzy = 0

(iv) Normal component of the displacement of the solid should be equal to that of the liquid,
that is w = w′j where j = 1, 2

Imposing these above mentioned boundary conditions and using Eqs. (2.8), we get the follo-
wing four equations

µ
[(
−C

2
1

C22
(ξ2 + α2) + 2ξ2

)
C11A1 +

(
−C

2
1

C22
(ξ2 + α2) + 2ξ2

)
S1A2 − (2iξβ)S2A3

+ (2iξβ)C22A4 − (2iξγ)S3A5 + (2iξγ)C3A6
]
− λL(ξ2 + δ2)A7S4 = 0

µ[(−2iξα)S1A1 + (2iξα)C11A2 + (−ξ2 + β2 + l2ξ4 + l2β4 + 2l2ξ2β2)C22A3
+ (−ξ2 + β2 + l2ξ4 + l2β4 + 2l2ξ2β2)S2A4 + (−ξ2 + γ2 + l2ξ4 + l2γ4 + 2l2ξ2γ2)C3A5
+ (−ξ2 + γ2 + l2ξ4 + l2γ4 + 2l2ξ2γ2)S3A6] = 0

− 2η[(β3 + ξ2β)S2A3 − (β3 + ξ2β)C22A4 + (γ3 + ξ2γ)S3A5 − (γ3 + ξ2γ)C3A6] = 0
−A1αS1 +A2αC11 +A3iξC22 +A4iξS2 +A5iξC3 +A6iξS3 −A7δC4 = 0

(2.9)

Here S1 = sin(αd), S2 = sin(βd), S3 = sin(γd), C11 = cos(αd), C22 = cos(βd), C3 = cos(γd),
S4 = sin(δH) and C4 = cos(δH).
Equations (2.9) will have a non-trivial solution if the determinant of coefficients of the unk-

nowns A1, A2, A3, A4, A5, A6 and A7 vanishes. After applying this condition to the above
system of equations and with a series of tedious mathematical calculations, we obtain the fol-
lowing secular equations for the Lamb waves in a plate loaded with an inviscid liquid layer on
both sides

± αλLKβKγKδ

[
−β(1 + l2Kγ)

t4

t±13
+ γ(1 + l2Kβ)

t4

t±12

]

+ βKβ [(γ2 − ξ2) + l2K2γ ]µδP
( t1
t3

)±1
− γKγ [(β2 − ξ2) + l2K2β ]µδP

( t1
t2

)±1

= 4αβγδµξ2(Kβ −Kγ)

(2.10)

where Kβ = β2 + ξ2, Kγ = γ2 + ξ2, Kδ = δ2 + ξ2, P = −(C21/C22 )(ξ2 + α2) + 2ξ2, t1 = S1/C11,
t2 = S2/C22, t3 = S3/C3 and t4 = S4/C4.
Here “+” sign corresponds to skew symmetric and “−” sign refers to symmetric modes of

the Lamb waves.
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In the absence of the liquid layer, (λL → 0), Eq. (2.10) reduces to

βKβ[(γ
2 − ξ2) + l2K2γ ]

( t1
t3

)±1
− γKγ [(β2 − ξ2) + l2K2β ]

(t1
t2

)±1
=
4αβγξ2(Kβ −Kγ)

P
(2.11)

This equation is the same as the obtained and studied by the authors (Sharma and Kumar,
2014) for Lamb waves in an isotropic elastic plate within the couple stress theory.

3. Numerical results and discussion

To investigate the effects of characteristic length and inner microstructure on the propaga-
tion of Lamb waves, the material of the plate is assumed to have properties similar to cor-
tical bone, so following Vavva et al. (2009), the material properties are Young’s modulus
E = µ(3λ + 2µ)/(λ + µ) = 14GPa, Poisson ratio ν = λ/[2(λ + µ)] = 0.37 and densi-
ty ρ = 1500 kg/m3, the values of bulk longitudinal and shear velocities are C1 = 4063m/s,
C2 = 1846m/s, respectively. The fluid medium used is an inviscid liquid with CL = 1.5 ·103 m/s
and density ρL = 1000 kg/m3. The size of bone internal microstructure (internal cell size) ranges
from 10 to 500µm. Here, to study the impact of characteristic length, different cases of charac-
teristic lengths l, comparable with the internal cell size h such as l = 0.0003m, l = 0.0001m,
l = 0.00003 m are considered.
Figures 2 and 3 show the phase velocity profile of Lamb waves in an elastic plate under the

effect of an inviscid liquid layer on both sides for a fixed characteristic length (l = 0.0001m)
and fixed thickness of the liquid layer (H = 0.02m). Figure 2 shows the phase velocity profiles
of fundamental modes of symmetric (S0) and skew symmetric (A0) Lamb waves. The phase
velocity profiles of skew symmetric Lamb waves for different modes (M = 1, M = 2 and M = 3)
are shown in Fig. 3. It is observed that in the wave number range 0-2, the secular equation has
only one root – these are the fundamental modes (S0 and A0) of Lamb waves. As the wave
number increases, new roots start appearing for both symmetric and skew symmetric modes.
The behaviour of these profiles is quite in agreement with the earlier findings. It is observed
that the magnitude of phase velocity of these profiles is quite high for the lower wave number,
which decreases at a steady rate and becomes asymptotic for higher wave numbers.

Fig. 2. Phase velocity profile of fundamental modes of Lamb waves (symmetrical (S0) and skew
symmetrical (A0)) with the wave number in an elastic plate bordered with a liquid layer

Lamb waves propagating in a plate bounded by a liquid on both sides leak some of its
energy into the liquid and this situation has practical importance in the field of NDT. To study
the impact of loadings on Lamb waves, Figs. 4a and 4b are drawn showing phase velocity
profiles of skew symmetrical Lamb waves for two different values of thickness of the liquid layer
(H1 = 0.01m and H2 = 0.02m), and the profiles are compared with the case of no liquid
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Fig. 3. Phase velocity profiles of skew symmetrical modes (M1, M2 and M3 for M = 1, 2, 3, respectively)
of Lamb waves with the wave number in an elastic plate bordered with a liquid layer

loadings H0. Figure 4a is for M = 1 skew symmetrical mode and Fig. 4b is for M = 2 mode.
In both cases, the characteristic length (l = 0.0001m) is kept fixed. It can be seen that with
an increase in the thickness of the liquid loadings, the phase velocity of the skew symmetrical
Lamb waves decreases for the same wave number. As the variation in the phase velocity is very
small with the increasing value of thickness of the liquid layer and it is not possible to show
these variations graphically for a wide range of wave numbers, so the figures are drawn with
very small variations in the wave numbers to depict the effects more precisely.

Fig. 4. Phase velocity profile of Lamb waves for skew symmetrical mode ((a) M = 1, (b) M = 2) with
the wave number in an elastic plate bordered with a liquid layer of different thicknesses (H0 = 0.00m,

H1 = 0.01m and H2 = 0.02m)

The effect of the characteristic length parameter l, on the phase velocity profiles of skew
symmetric Lamb waves are shown in Figs. 5a and 5b. The characteristic length parameter l is a
microstructural parameter involved in the couple stress theory and is assumed to be of the order
of internal cell size of the considered material. The material of the considered plate has properties
similar to cortical bone and the internal cell size of cortical bone varies from 10 to 500µm (Vavva
et al., 2009). So, here three different values of characteristic lengths are considered, for profile L1,
the characteristic length is 0.00003m, for L2 profile, the characteristic length is 0.0001m and
for L3, it is 0.0003m. In all the three cases, the considered characteristic length of the material
lies in the range of internal cell size of the material. As the problem deals with the study of
microstructural effects and to observe these effects again, graphs are drawn again with a very
small variation in the wave number and phase velocity of Lamb waves. Figure 5a shows the
phase velocity profiles of skew symmetric Lamb waves for M = 1 mode, with three different
values of the characteristic length and fixed thickness of the liquid layer (H = 0.02m). Figure 5b
shows the phase velocity profiles of skew symmetric Lamb waves for M = 2 mode, again with
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Fig. 5. Phase velocity profile of Lamb waves for skew symmetrical mode ((a) M = 1, (b) M = 2) with
the wave number in an elastic plate bordered with a liquid layer of fixed thickness and different

characteristic lengths L1 = 0.00003m, L2 = 0.0001m and L3 = 0.0003m

the same considered values of the characteristic length and fixed thickness of the liquid layer
(H = 0.02m). From both figures, it is observed that with an increase in the characteristic length
parameter l, the phase velocity of skew symmetric Lamb waves is also increasing for the same
wave number.

4. Conclusion

As the physical model of the problem consists of a thin plate loaded with an inviscid liquid on
both sides, it is of practical use in ultrasonic immersion testing of plates. The impact of liquid
loadings is studied on the propagation of phase velocity of Lamb waves. Three different cases for
thickness of the liquid loaded on both sides of the plate are considered. It is observed that with
an increase in the thickness of the loadings, the phase velocity tends to decrease. The material of
the plate considered is assumed to have properties similar to cortical bone (Vavva et al., 2009),
so it also enhances the applicability of this model in characterisation of the properties of bones
loaded with different type of fluids.
To find the impact of the microstructural parameter, the problem is solved by applying

the couple stress theory (Hadjesfandiari and Dargush, 2011). This theory involves only one
microstructural parameter, called the characteristic length (l) and is assumed to be of the order
of internal cell size of the material (Georgiadis and Velgaki, 2003; Vavva et al., 2009). Here,
three different values of the characteristic length are considered. They are comparable with the
internal cell size of the material and their effect is studied on the phase velocity of the Lamb
waves. It is observed that with an increase in the value of this parameter, the phase velocity of
the Lamb wave also increases.
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